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Apoapsis - Periapsis

• Apoapsis is the furthest position in an orbit 
around a primary (apogee, aphelion etc)

• Periapsis is the nearest position in an orbit 
around a primary (perigee, perihelion etc)



Vernal Equinox – Equatorial Plane
• The vernal equinox 

is an imaginary 
point in space which 
lies along the line 
representing the 
intersection of the 
Earth's equatorial 
plane and the plane 
of the Earth's orbit 
around the Sun or 
the ecliptic. Sun 
passes through the 
vernal equinox, 
about March 21, 
marking the 
beginning of spring 
in the Northern 
Hemisphere



Heliocentric Coordinate System



Epoch
• Epoch is a moment in time used as a reference point for some 

time-varying astronomical quantity, such as the celestial 
coordinates or elliptical orbital elements of a celestial body, 
because these are subject to perturbations and vary with time.

• 86 50.28438588 as Epoch in Julian time is:
• The epoch year (1986) and 50.28438588 as the Julian day fraction 

meaning a little over 50 days after January 1, 1986. The resulting 
time of the vector would be 1986/050:06:49:30.94.

• Start with 50.28438588 days (Days = 50)
50.28438588 days - 50 = 0.28438588 days
0.28438588 days x 24 hours/day = 6.8253 hours (Hours = 6)
6.8253 hours - 6 = 0.8253 hours
0.8253 hours x 60 minutes/hour = 49.5157 minutes (Minutes = 49)
49.5157 - 49 = 0.5157 minutes
0.5157 minutes x 60 seconds/minute = 30.94 seconds (Seconds = 
30.94)



Orbital Eccentricity

• The orbital eccentricity of 
an astronomical object is a 
parameter that determines 
the amount by which its 
orbit around another body 
deviates from a 
perfect circle. A value of 0 
is a circular orbit, values 
between 0 and 1 form 
an elliptical orbit, 1 is 
a parabolic escape orbit, 
and greater than 1 is a 
hyperbola.



Energy and Eccentricity



Major-Minor-Semimajor Axis

• The longest and shortest 
lines that can be drawn 
through the center of an 
ellipse are called the major 
axis and minor axis, 
respectively

• The semi-major axis (a) is 
one-half of the major axis 
and represents a satellite's 
mean distance from its 
primary. 2a is major axis.



Semimajor Axis
• We can express the semimajor axis in terms of the 

distance from the center of the Earth to apogee 
(Rapogee) and perigee (Rperigee). It expresses the size 
of the orbit. The semimajor axis can be found using:

• a = semimajor axis (km)
Rapogee = Distance from center of Earth to apogee 
(km)
Rperigee = Distance from center of Earth to perigee 
(km)



Size of the Orbit

• Hence the semimajor axis actually tells us the 
size of the orbit. 



True Anomaly
• It is the angle, measured positive in the direction of 

motion, between perigee and the satellite's 
position. It changes continuously during the orbit of 
the satellite. 



Ascending Node

• We measure how an orbit is twisted by locating 
its ascending node, the point where the satellite 
crosses the equator moving south to north.



Argument of Perigee
• The argument of perigee, is the angular 

distance between the ascending node and 
perigee.



Mean Anomaly and Eccentric 
Anomaly

• Mean Anomaly (M): The angle 
measured since perigee that 
would be swept out by the 
satellite if its orbit were perfectly 
circular. The Mean Anomaly 
indicates where the satellite was 
in its orbit at a specific time.

• Eccentric Anomaly (E): The angle, 
measured since perigee, based 
on the hypothetical position on 
the circular orbit defined by a 
line perpendicular to the major 
axis that passes through the true 
position of the satellite and 
intersects with the circular orbit



Orbital Parameters



Summary of Orbital Elements



Two Line Element Set Coordinate 
System



Sample Orbital Information for a 
Satellite

• Sat Name: CARTOSAT-2
• CAT No. 37838
• DRAG 0.00001006
• BSTAR 14407-3
• Inclination 19.7947
• Right Ascension 62.7084
• Eccentricity 0.0060638
• Argument of perigee 17.8079
• Mean Anomaly 342.4581
• Mean Motion 14.2066792
• Element Set 2742
• Rev No. 25724Epoch Time 11289.8779
• SemiMajor Axis 7201.23183
• Height above Equator 823.09
• Period ( in seconds ) 6081.646441
• Epoch Year ------------------> 2011
• Epoch Day of year---------> 289
• EpochTime ------------------> 21:04:10



Sample Satellite Orbits

• The orbit of a satellite launched by the simple 
means of pushing it out of the bay of the 
Space Shuttle would have Orbital period 90 
minutes, semi-major axis about 6500 km

• The motion of a spacecraft that is always 
located over the same part of the Earth would 
have Semi-major axis 22,000 miles (35,000 
km), eccentricity 0



Circular Orbital Equation

• Circular velocity of an orbit around an object is 
defined as:

• Where for Earth

r = 6.378 x 10 ^ 6 m

Hence for escape from earth into circular orbit you 
would need a velocity of 7.9 km / sec
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Escape Orbital Equation

• For any vehicle to escape the Earth completely, it 
would need to have a parabolic or a hyperbolic 
trajectory. 

• A parabolic / hyberbolic trajectory would have the 
least required potential and kinetic energy. Hence, 
the equation for parabolic orbital velocity will give 
the minimum escape velocity of 11.2 km/sec.

r

k
V

22




Problem 1

• Calculate the velocity of an artificial satellite 
orbiting the Earth in a circular orbit at an altitude of 
200 km above the Earth's surface.

• ANSWER

Radius of Earth = 6,378.14 km 

GM of Earth = 3.986005×1014 m3/s2

Given: r = (6,378.14 + 200) × 1,000 = 6,578,140 m 

v= SQRT[ GM / r ] 

v = SQRT[ 3.986005×1014 / 6,578,140 ]

v = 7,784 m/s



Period Calculation of a Satellite

• The most simple equation for the period of a 
satellite is given by:

where k=1.9965x10^7

• The  velocity of a satellite for circular orbit is:
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Problem 2

• Calculate the period of revolution for the 
satellite in problem 1

• ANSWER

Given: r = 6,578,140 m 

where k=1.9965x10^7

T= 5,310 s
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Problem 3
• Calculate the radius of orbit for a Earth satellite in a 

geosynchronous orbit, where the Earth's rotational 
period is 86,164.1 seconds.

• ANSWER

T = 86,164.1 s

r = [ T2 × GM / (4 × ∏ 2) ]1/3

r = [ 86,164.12 × 3.986005×1014 / (4 × ∏2) ]1/3

r = 42,164,170 m
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Velocity at Elliptical Orbit
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Problem 4
• An artificial Earth satellite is in an elliptical orbit which brings it to an 

altitude of 250 km at perigee and out to an altitude of 500 km at 
apogee. Calculate the velocity of the satellite at both perigee and 
apogee.

ANSWER
Rp = (6,378.14 + 250) × 1,000 = 6,628,140 m 
Ra = (6,378.14 + 500) × 1,000 = 6,878,140 m

Vp = SQRT[ 2 × 3.986005×1014 × 6,878,140 / (6,628,140 × (6,878,140 + 
6,628,140)) ] 

Vp = 7,826 m/s 

Va = SQRT[ 2 × 3.986005×1014 × 6,628,140 / (6,878,140 × (6,878,140 + 
6,628,140)) ] 
Va = 7,542 m/s
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Problem 5
• A satellite in Earth orbit passes through its perigee point at an 

altitude of 200 km above the Earth's surface and at a velocity 
of 7,850 m/s. Calculate the apogee altitude of the satellite.

• ANSWER

Rp = (6,378.14 + 200) × 1,000 = 6,578,140 m \

Vp = 7,850 m/s

Solve for Ra by equation:

Ra = Rp / [2 × GM / (Rp × Vp2) - 1] 

Ra = 6,578,140 / [2 × 3.986005×1014 / (6,578,140 × 7,8502) - 1] 

Ra = 6,805,140 m 

Altitude @ apogee = 6,805,140 / 1,000 - 6,378.14 = 427.0 km

)(

2

pap

a
p

RRR

GMR
V






Eccentricity of an Orbit

• Eccentricity of an orbit is given by the relation 
below as:
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Problem 6
• Calculate the eccentricity of the orbit for the 

satellite in problem 5
• ANSWER

Rp = 6,578,140 m and Vp = 7,850 m/s
With equation:

e = Rp × Vp2 / GM - 1 
e = 6,578,140 × 7,8502 / 3.986005×1014 - 1 

e = 0.01696
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Periapsis and Apoapsis Calculation

• If the semi-major axis a and the 
eccentricity e of an orbit are known, then the 
periapsis (perigee) and apoapsis (apogee) 
distances can be calculated by:
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Problem 7
• A satellite in Earth orbit has a semi-major axis of 6,700 

km and an eccentricity of 0.01. Calculate the satellite's 
altitude at both perigee and apogee.

• ANSWER
a = 6,700 km and e = 0.01
Rp = a × (1 - e) 
Rp = 6,700 × (1 - .01) 
Rp = 6,633 km 
Altitude @ perigee = 6,633 - 6,378.14 = 254.9 km
Ra = a × (1 + e) 
Ra = 6,700 × (1 + .01) 
Ra = 6,767 km 
Altitude @ apogee = 6,767 - 6,378.14 = 388.9 km



Sample Orbit Determination

• If the space shuttle is in an altitude of 250 km in a 
circular orbit, then calculate the period of the orbit 
and its speed.

• The radius of the orbit= 6378.14 km + 250 =6628.14

• The period of the orbit is :

• The velocity of the Shuttle is:
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Orbit Determination
• A space vehicle's orbit may be 

determined from the position and 
the velocity of the vehicle at the 
beginning of its free flight. A vehicle's 
position and velocity can be 
described by the variables r, v, and , 
where r is the vehicle's distance from 
the center of the Earth, v is its 
velocity, and is the angle between 
the position and the velocity vectors, 
called the zenith angle .

• If we let r1, v1, and 1 be the initial 
(launch) values of r, v, and, then we 
may consider these as given 
quantities. If we let 
point P2 represent the perigee,



Launch of a Space Vehicle

• As based upon the launch of a space vehicle, it is 
possible to determine its orbit parameters:



Eccentricity of an Orbit

• Eccentricity of an orbit by the initial launch 
parameters can be defined as:



Problem 9

• Calculate the eccentricity of the orbit for the 
satellite with the following parameters?

Given: r1 = 6,628,140 m 

v1 = 7,900 m/s                   = 89º

With the eccentricity equation:

e = SQRT[ (6,628,140 × 7,9002 / 3.986005×1014 -
1)2 × sin2(89) + cos2(89) ]

e = 0.0416170



True Anomaly

• To pin down a satellite's orbit in space, we 
need to know the angle ,    the true anomaly, 
from the periapsis point to the launch point. 
This angle is given by:



Problem 10
• A satellite is launched into Earth orbit where its launch 

vehicle burns out at an altitude of 250 km. At burnout the 
satellite's velocity is 7,900 m/s with the zenith angle equal 
to 89 degrees. Calculate the angle from perigee point to 
launch point for the satellite.

• ANSWER

r1 = 6,628,140 m   v1 = 7,900 m/s        = 89º

tan   = (6,628,140 × 7,9002 / 3.986005×1014) × sin(89) × cos(89) / 
[(6,628,140 × 7,9002 / 3.986005×1014) × sin2(89) - 1]

tan    = 0.48329           

= arctan(0.48329) =  25.794o



Flight Path Angle

• In most calculations, the complement of the 
zenith angle is used, denoted by Φ. This angle 
is called the flight-path angle, and is positive 
when the velocity vector is directed away from 
the primary as shown:



Eccentricity and True Anomaly by 
Flight Path Angle



Problem 11

• A satellite is launched into Earth orbit where its 
launch vehicle burns out at an altitude of 250 km. 
At burnout the satellite's velocity is 7,900 m/s with 
the zenith angle equal to 89 degrees. Calculate the 
semi-major axis of the orbit for the satellite.

• ANSWER

a = 1 / ( 2 / 6,628,140 - 7,9002 / 3.986005×1014) )

a = 6,888,430 m



Locating the Satellite in Orbit
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e : eccentricity of the orbit
a : measure from the foci to the apogee
r : radius from the foci of the planet

: True anomaly (measure of the angle from the perigee to the 
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Locating the Satellite in Orbit

• We can further calculate the flight path angle 
and the velocity of the spacecraft by the 
following relations:



Problem 12
• A satellite is in an orbit with a semi-major axis of 7,500 km and an 

eccentricity of 0.1 Calculate the length of its position vector, its flight-path 

angle, and its velocity when the satellite's true anomaly is 225 degrees.

• ANSWER

Given: a = 7,500,000 m       e = 0.1        = 225 degrees

r = 7,500,000 × (1 - 0.12) / (1 + 0.1 × cos(225)) 

r = 7,989,977 m 

= arctan[ 0.1 × sin(225) / (1 + 0.1 × cos(225))] = 

=  -4.351 degrees

v = SQRT[ 3.986005×1014 × (2 / 7,989,977 - 1 / 7,500,000)] 

v = 6,828 m/s
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Orbital Perturbations
• There are other forces acting on a satellite that perturb 

it away from the nominal orbit. These perturbations, or 
variations in the orbital elements, can be classified 
based on how they affect the Keplerian elements.

• Secular variations represent a linear variation in the 
element, short-period variations are periodic in the 
element with a period less than the orbital period, 
and long-period variations are those with a period 
greater than the orbital period. Because secular 
variations have long-term effects on orbit prediction 
(the orbital elements affected continue to increase or 
decrease)



Third Body Perturbations

• The gravitational forces of the Sun and the Moon cause 
periodic variations in all of the orbital elements, but 
only the longitude of the ascending node, argument of 
perigee, and mean anomaly experience secular 
variations. 

• These secular variations arise from a gyroscopic 
precession of the orbit about the ecliptic pole. The 
secular variation in mean anomaly is much smaller 
than the mean motion and has little effect on the orbit, 
however the secular variations in longitude of the 
ascending node and argument of perigee are 
important, especially for high-altitude orbits.



Moon and Sun Perturbations
• For nearly circular orbits the equations for the secular rates of change 

resulting from the Sun and Moon are

• Longitude of the ascending node:

• Argument of perigee:

where i is the orbit inclination, n is the number of orbit revolutions per day, 
and and are in degrees per day



Problem 13
• Calculate the perturbations in longitude of the ascending node and 

argument of perigee caused by the Moon and Sun for the 
International Space Station orbiting at an altitude of 400 km, an 
inclination of 51.6 degrees, and with an orbital period of 92.6 
minutes.

• i = 51.6 degrees      n = 1436 / 92.6 = 15.5 revolutions/day

==-0.00338 × cos(51.6) / 15.5   =   -0.000135 deg/day

= -0.00154 × cos(51.6) / 15.5  =  -0.0000617 deg/day

= 0.00169 × (4 - 5 × sin2 51.6) / 15.5  =  0.000101 deg/day

= 0.00077 × (4 - 5 × sin2 51.6) / 15.5  = 0.000046 deg/day



Perturbations due to Non-Spherical 
Earth

• In fact, the Earth is neither homogeneous nor spherical. 
The most dominant features are a bulge at the equator, a 
slight pear shape, and flattening at the poles. For a 
potential function of the Earth, we can find a satellite's 
acceleration by taking the gradient of the potential 
function. The most widely used form of the geopotential
function depends on latitude and geopotential
coefficients, Jn, called the zonal coefficients.

• The potential generated by the non-spherical Earth causes 
periodic variations in all the orbital elements. The 
dominant effects, however, are secular variations in 
longitude of the ascending node and argument of perigee 
because of the Earth's oblateness, represented by the 
J2 term in the geopotential expansion.



Perturbations due to Non-Spherical 
Earth

• where n is the mean motion in degrees/day, J2 has the value 
0.00108263, RE is the Earth's equatorial radius, a is the semi-major 
axis in kilometers, i is the inclination, e is the eccentricity, 
and and are in degrees/day. For satellites in GEO and below, the 
J2 perturbations dominate; for satellites above GEO the Sun and 
Moon perturbations dominate.

• Molniya orbits are designed so that the perturbations in argument of 
perigee are zero. This conditions occurs when the term 4-5sin2i is 
equal to zero or, that is, when the inclination is either 63.4 or 116.6 
degrees.



Problem 14

• A satellite is in an orbit with a semi-major axis of 7,500 km, 
an inclination of 28.5 degrees, and an eccentricity of 0.1. 
Calculate the J2 perturbations in longitude of the ascending 
node and argument of perigee. 

ANSWER
Given: a = 7,500 km   i = 28.5 degrees    e = 0.1

J2 = -2.06474×1014 × a-7/2 × (cos i) × (1 - e2)-2

= -2.06474×1014 × (7,500)-7/2 × (cos 28.5) × (1 - (0.1)2)-2

= -5.067 deg/day

J2 = 1.03237×1014 × a-7/2 × (4 - 5 × sin2 i) × (1 - e2)-2

= 1.03237×1014 × (7,500)-7/2 × (4 - 5 × sin2 28.5) × (1 - (0.1)2)-2

= 8.250 deg/day



Perturbations from Atmospheric Drag

• Drag is the resistance offered by a gas or liquid to a body 
moving through it. A spacecraft is subjected to drag forces 
when moving through a planet's atmosphere. This drag is 
greatest during launch and reentry, however, even a space 
vehicle in low Earth orbit experiences some drag as it moves 
through the Earth's thin upper atmosphere. In time, the 
action of drag on a space vehicle will cause it to spiral back 
into the atmosphere, eventually to disintegrate or burn up. If 
a space vehicle comes within 120 to 160 km of the Earth's 
surface, atmospheric drag will bring it down in a few days, 
with final disintegration occurring at an altitude of about 80 
km. Above approximately 600 km, on the other hand, drag is 
so weak that orbits usually last more than 10 years - beyond a 
satellite's operational lifetime. The deterioration of a 
spacecraft's orbit due to drag is called decay.



Drag Force on a Body
• The drag force FD on a body acts in the opposite 

direction of the velocity vector and is given by the 
equation:

• where CD is the drag coefficient, is the air 
density, v is the body's velocity, and A is the area 
of the body normal to the flow. The drag 
coefficient is dependent on the geometric form of 
the body and is generally determined by 
experiment. 

• Earth orbiting satellites typically have very high 
drag coefficients in the range of about 2 to 4.



Satellite Decay Due to Drag
• The region above 90 km is the Earth's thermosphere where 

the absorption of extreme ultraviolet radiation from the Sun 
results in a very rapid increase in temperature with altitude. 
At approximately 200-250 km this temperature approaches a 
limiting value, the average value of which ranges between 
about 600 and 1,200 K over a typical solar cycle. 

• Solar activity also has a significant affect on atmospheric 
density, with high solar activity resulting in high density. 
Below about 150 km the density is not strongly affected by 
solar activity; however, at satellite altitudes in the range of 
500 to 800 km, the density variations between solar 
maximum and solar minimum are approximately two orders 
of magnitude. 

• The large variations imply that satellites will decay more 
rapidly during periods of solar maxima and much more slowly 
during solar minima.



Decay Analysis for Circular Orbits

• For circular orbits we can approximate the changes in semi-
major axis, period, and velocity per revolution using the 
following equations:

• where a is the semi-major axis, P is the orbit period, 
and V, A and m are the satellite's velocity, area, and mass 
respectively. The term m/(CDA), called the ballistic coefficient, 
is given as a constant for most satellites. Drag effects are 
strongest for satellites with low ballistic coefficients, this is, 
light vehicles with large frontal areas.



Satellite Lifetime Due to Drag

• A rough estimate of a satellite's lifetime, L, 
due to drag can be computed from:

• where H is the atmospheric density scale 
height.



Atmospheric Properties



Problem 15 
A satellite is in a circular Earth orbit at an altitude of 400 km. The satellite has 
a cylindrical shape 2 m in diameter by 4 m long and has a mass of 1,000 kg. 
The satellite is traveling with its long axis perpendicular to the velocity vector 
and it's drag coefficient is 2.67. Calculate the perturbations due to 
atmospheric drag and estimate the satellite's lifetime. 

SOLUTION, 
Given: 
a = (6,378.14 + 400) × 1,000 = 6,778,140 m
A = 2 × 4 = 8 m2

m = 1,000 kg 
CD = 2.67

• From Atmosphere Properties,
ρ = 2.62×10-12 kg/m3

H = 58.2 km 

• V = SQRT[ GM / a ] 
V = SQRT[ 3.986005×1014 / 6,778,140 ]
V = 7,669 m/s 

Use Equations given for decay analysis in circular orbit

http://www.braeunig.us/space/atmos.htm


Δarev = (-2 × π× CD × A × ρ × a2) / m 
Δ arev = (-2 × π × 2.67 × 8 × 2.62×10-12 × 6,778,1402) / 1,000 
Δ arev = -16.2 m 

Δ Prev = (-6 × π 2 × CD × A × ρ × a2) / (m × V) 
Δ Prev = (-6 × π 2 × 2.67 × 8 × 2.62×10-12 × 6,778,1402) / (1,000 × 7,669) 
Δ Prev = -0.0199 s 

Δ Vrev = (π × CD × A × ρ × a × V) / m 
Δ Vrev = (π × 2.67 × 8 × 2.62×10-12 × 6,778,140 × 7,669) / 1,000 
Δ Vrev = 0.00914 m/s 

Equation (4.56),
L ~ -H / Δarev

L ~ -(58.2 × 1,000) / -16.2  (x1000 because of meter conversion) 
L ~ 3,600 revolutions



Perturbations from Solar Radiation

• Solar radiation pressure causes periodic variations in all 
of the orbital elements. The magnitude of the 
acceleration in m/s2 arising from solar radiation 
pressure is:

• where A is the cross-sectional area of the satellite 
exposed to the Sun and m is the mass of the satellite in 
kilograms. 

• For satellites below 800 km altitude, acceleration from 
atmospheric drag is greater than that from solar 
radiation pressure; above 800 km, acceleration from 
solar radiation pressure is greater.


