
Satellite Orbital Maneuvers and 
Transfers

Dr Ugur GUVEN



Orbit Maneuvers

• At some point during the lifetime of most space 
vehicles or satellites, we must change one or more 
of the orbital elements. For example, we may need 
to transfer from an initial parking orbit to the final 
mission orbit, rendezvous with or intercept another 
spacecraft, or correct the orbital elements to adjust 
for the perturbations discussed in the previous 
section. Most frequently, we must change the orbit 
altitude, plane, or both. To change the orbit of a 
space vehicle, we have to change its velocity vector 
in magnitude or direction. 



Orbit Maneuvers Strategy
• Most propulsion systems operate for only a short 

time compared to the orbital period, thus we can 
treat the maneuver as an impulsive change in 
velocity while the position remains fixed.

• For this reason, any maneuver changing the orbit 
of a space vehicle must occur at a point where 
the old orbit intersects the new orbit. 

• If the orbits do not intersect, we must use an 
intermediate orbit that intersects both. In this 
case, the total maneuver will require at least two 
propulsive burns.



Orbit Attitude Transfer
• The most common type of in-plane maneuver 

changes the size and energy of an orbit, usually 
from a low-altitude parking orbit to a higher-
altitude mission orbit such as a geosynchronous 
orbit. Because the initial and final orbits do not 
intersect, the maneuver requires a transfer 
orbit. Figure represents a Hohmann transfer 
orbit. 

• In this case, the transfer orbit's ellipse is tangent 
to both the initial and final orbits at the transfer 
orbit's perigee and apogee respectively. The 
orbits are tangential, so the velocity vectors are 
collinear, and the Hohmann transfer represents 
the most fuel-efficient transfer between two 
circular, coplanar orbits. 

• When transferring from a smaller orbit to a 
larger orbit, the change in velocity is applied in 
the direction of motion; when transferring from 
a larger orbit to a smaller, the change of velocity 
is opposite to the direction of motion.



Hohmann Transfer
• The total change in velocity required for the 

orbit transfer is the sum of the velocity 
changes at perigee and apogee of the 
transfer ellipse. Since the velocity vectors 
are collinear, the velocity changes are just 
the differences in magnitudes of the 
velocities in each orbit. If we know the 
initial and final orbits, rA and rB, we can 
calculate the total velocity change using the 
following equations



Hohmann Transfer Equations



Problem 1
A spacecraft is in a circular parking orbit with an altitude of 200 km. 
Calculate the velocity change required to perform a Hohmann transfer to a circular 
orbit at geosynchronous altitude.
Given: rA = (6,378.14 + 200) × 1,000 = 6,578,140 m
For geosynchronous orbits, rB = 42,164,170 m 
Equations given previously:
atx = (rA + rB) / 2 
atx = (6,578,140 + 42,164,170) / 2 
atx = 24,371,155 m 

ViA = SQRT[ GM / rA ] 
ViA = SQRT[ 3.986005×1014 / 6,578,140 ] 
ViA = 7,784 m/s 

VfB = SQRT[ GM / rB ] 
VfB = SQRT[ 3.986005×1014 / 42,164,170 ] 
VfB = 3,075 m/s 

VtxA = SQRT[ GM × (2 / rA - 1 / atx)] 
VtxA = SQRT[ 3.986005×1014 × (2 / 6,578,140 - 1 / 24,371,155)] 
VtxA = 10,239 m/s 



VtxB = SQRT[ GM × (2 / rB - 1 / atx)] 
VtxB = SQRT[ 3.986005×1014 × (2 / 42,164,170 - 1 / 24,371,155)] 
VtxB = 1,597 m/s 

ΔVA = VtxA - ViA
ΔVA = 10,239 - 7,784 
ΔVA = 2,455 m/s 

ΔVB = VfB - VtxB

ΔVB = 3,075 - 1,597 
ΔVB = 1,478 m/s 

ΔVT = Δ VA + Δ VB

ΔVT = 2,455 + 1,478 
ΔVT = 3,933 m/s



One Tangent Burn

• Ordinarily we want to transfer a 
space vehicle using the smallest 
amount of energy, which usually 
leads to using a Hohmann
transfer orbit. However, 
sometimes we may need to 
transfer a satellite between 
orbits in less time than that 
required to complete the 
Hohmann transfer. Figure shows 
a faster transfer called the One-
Tangent Burn. In this instance the 
transfer orbit is tangential to the 
initial orbit. It intersects the final 
orbit at an angle equal to the 
flight path angle of the transfer 
orbit at the point of intersection.



One Tangent Burn Maneuver
• An infinite number of transfer orbits are 

tangential to the initial orbit and intersect the 
final orbit at some angle. Thus, we may choose 
the transfer orbit by specifying the size of the 
transfer orbit, the angular change of the 
transfer, or the time required to complete the 
transfer. We can then define the transfer orbit 
and calculate the required velocities.

• For example, we may specify the size of the 
transfer orbit, choosing any semi-major axis 
that is greater than the semi-major axis of the 
Hohmann transfer ellipse. Once we know the 
semi-major axis of the ellipse, atx, we can 
calculate the eccentricity, angular distance 
traveled in the transfer, the velocity change 
required for the transfer, and the time 
required to complete the transfer.



One Tangent Burn Equations



PROBLEM 2: A satellite is in a circular parking orbit with an altitude of 200 km. Using 
a one-tangent burn, it is to be transferred to geosynchronous altitude using a transfer 
ellipse with a semi-major axis of 30,000 km. Calculate the total required velocity 
change and the time required to complete the transfer.

SOLUTION,
Given: rA = (6,378.14 + 200) × 1,000 = 6,578,140 m
rB = 42,164,170 m
atx = 30,000 × 1,000 = 30,000,000 m ; Equations for One Tangent Burn
• e = 1 - rA / atx

e = 1 - 6,578,140 / 30,000,000
e = 0.780729
• ν= arccos[(atx × (1 - e2) / rB - 1) / e ]
ν = arccos[(30,000,000 × (1 - 0.780729^2) / 42,164,170 - 1) / 0.780729 ]
ν = 157.670 degrees
• φ= arctan[ e × sin ν / (1 + e × cos ν)]
φ = arctan[ 0.780729 × sin(157.670) / (1 + 0.780729 × cos(157.670))]
φ = 46.876 degrees ; Equations from Hohmann Transfer

• ViA = SQRT[ GM / rA ]
ViA = SQRT[ 3.986005×10^14 / 6,578,140 ]
ViA = 7,784 m/s
• VfB = SQRT[ GM / rB ]
VfB = SQRT[ 3.986005×10^14 / 42,164,170 ]
VfB = 3,075 m/s



• VtxA = SQRT[ GM × (2 / rA - 1 / atx)]
VtxA = SQRT[ 3.986005×1014 × (2 / 6,578,140 - 1 / 30,000,000)] 
VtxA = 10,388 m/s 
• VtxB = SQRT[ GM × (2 / rB - 1 / atx)] 
VtxB = SQRT[ 3.986005×1014 × (2 / 42,164,170 - 1 / 30,000,000)]
VtxB = 2,371 m/s
• ΔVA = VtxA - ViA
Δ VA = 10,388 - 7,784
Δ VA = 2,604 m/s

• Δ VB = SQRT[ VtxB
2 + VfB

2 - 2 × VtxB × VfB × cosφ ]
Δ VB = SQRT[ 2,3712 + 3,0752 - 2 × 2,371 × 3,075 × cos(46.876)]
Δ VB = 2,260 m/s

• Δ VT = Δ VA + Δ VB
Δ VT = 2,604 + 2,260
Δ VT = 4,864 m/s

• E = arctan[(1 - e2)1/2 × sin ν / (e + cos ν)]
E = arctan[(1 - 0.7807292)1/2 × sin(157.670) / (0.780729 + cos(157.670))]
E = 2.11688 radians

• TOF = (E - e × sin E) × SQRT[ atx
3 / GM ]

TOF = (2.11688 - 0.780729 × sin(2.11688)) × SQRT[ 30,000,0003 / 3.986005×1014 ]
TOF = 11,931 s = 3.314 hours



Spiral Transfer

• Another option for changing the size of an orbit is 
to use electric propulsion to produce a constant 
low-thrust burn, which results in a spiral transfer.
We can approximate the velocity change for this 
type of orbit transfer by

• where the velocities are the circular velocities of the 
two orbits.



Orbit Plane Changes
• To change the orientation of a satellite's 

orbital plane, typically the inclination, we 
must change the direction of the velocity 
vector. This maneuver requires a 
component of V to be perpendicular to 
the orbital plane and, therefore, 
perpendicular to the initial velocity 
vector. If the size of the orbit remains 
constant, the maneuver is called a simple 
plane change. We can find the required 
change in velocity by using the law of 
cosines. For the case in which Vf is equal 
to Vi, this expression reduces to

• where Vi is the velocity before and after 
the burn, and is the angle change 
required.



PROBLEM 3

Calculate the velocity change required to transfer a satellite 

from a circular 600 km orbit with an inclination of 28 degrees to an orbit of equal

size with an inclination of 20 degrees.

SOLUTION, 

Given: r = (6,378.14 + 600) × 1,000 = 6,978,140 m    

θ= 28 - 20 = 8 degrees

Vi = SQRT[ GM / r ]
Vi = SQRT[ 3.986005×1014 / 6,978,140 ]
Vi = 7,558 m/s

ΔV = 2 × Vi × sin(θ /2)
Δ V = 2 × 7,558 × sin(8/2) 
Δ V = 1,054 m/s



Location of Orbit Plane Changes
• Plane changes are very expensive in terms of the required 

change in velocity and resulting propellant consumption. To 
minimize this, we should change the plane at a point where 
the velocity of the satellite is a minimum: at apogee for an 
elliptical orbit. In some cases, it may even be cheaper to 
boost the satellite into a higher orbit, change the orbit plane 
at apogee, and return the satellite to its original orbit.

• Typically, orbital transfers require changes in both the size and 
the plane of the orbit, such as transferring from an inclined 
parking orbit at low altitude to a zero-inclination orbit at 
geosynchronous altitude. 

• We can do this transfer in two steps: a Hohmann transfer to 
change the size of the orbit and a simple plane change to 
make the orbit equatorial. A more efficient method (less total 
change in velocity) would be to combine the plane change 
with the tangential burn at apogee of the transfer orbit.



Orbit Plane Change Equation

• As we must change both the magnitude and direction 
of the velocity vector, we can find the required change 
in velocity using the law of cosines:

• where Vi is the initial velocity, Vf is the final velocity, 
and is the angle change required. As can be seen from 
equation, a small plane change can be combined with 
an altitude change for almost no cost in delta V or 
propellant. Consequently, in practice, geosynchronous 
transfer is done with a small plane change at perigee 
and most of the plane change at apogee.



PROBLEM 4
A satellite is in a parking orbit with an altitude of 200 km and an inclination of 28 
degrees. Calculate the total velocity change required to transfer the satellite to a 
zero-inclination geosynchronous orbit using a Hohmann transfer with a combined 
plane change at apogee.
Given: rA = (6,378.14 + 200) × 1,000 = 6,578,140 m 
rB = 42,164,170 m
θ = 28 degrees
From problem 1,

VfB = 3,075 m/s 
VtxB = 1,597 m/s 
Δ VA = 2,455 m/s
Equation (4.74),

Δ VB = SQRT[ VtxB
2 + VfB

2 - 2 × VtxB × VfB × cos ]
Δ VB = SQRT[ 1,5972 + 3,0752 - 2 × 1,597 × 3,075 × cos(28)]
Δ VB = 1,826 m/s

From  previous equation we know that:
Δ VT = Δ VA + Δ VB

Δ VT = 2,455 + 1,826 
Δ VT = 4,281 m/s



Three Burn Maneuver

• The first burn is a coplanar maneuver placing the 
satellite into a transfer orbit with an apogee much 
higher than the final orbit. When the satellite reaches 
apogee of the transfer orbit, a combined plane change 
maneuver is done. 

• This places the satellite in a second transfer orbit that is 
coplanar with the final orbit and has a perigee altitude 
equal to the altitude of the final orbit. 

• Finally, when the satellite reaches perigee of the 
second transfer orbit, another coplanar maneuver 
places the satellite into the final orbit. This three-burn 
maneuver may save propellant, but the propellant 
savings comes at the expense of the total time required 
to complete the maneuver.



Correcting Out of Plane Errors
• In some instances, however, a plane change is used to alter an 

orbit's longitude of ascending node in addition to the 
inclination. 

• An example might be a maneuver to correct out-of-plane 
errors to make the orbits of two space vehicles coplanar in 
preparation for a rendezvous. 

• If the orbital elements of the initial and final orbits are 
known, the then the plane change angle is determined by 
the:



PROBLEM 5

A spacecraft is in an orbit with an inclination of 30 degrees and the longitude 

of the ascending node is 75 degrees. Calculate the angle change required to 

change the inclination to 32 degrees and the longitude of the ascending node 

to 80 degrees. 

SOLUTION,
Given: ii = 30 degrees 
Ωi = 75 degrees 
if = 32 degrees 
Ω f = 80 degrees

• a1 = sin(ii)cos(Ωi) = sin(30)cos(75) = 0.129410
• a2 = sin(ii)sin(Ωi) = sin(30)sin(75) = 0.482963
• a3 = cos(ii) = cos(30) = 0.866025
• b1 = sin(if)cos(Ωf) = sin(32)cos(80) = 0.0920195
• b2 = sin(if)sin(Ω) = sin(32)sin(80) = 0.521869
• b3 = cos(if) = cos(32) = 0.848048 

• θ = arccos(a1 × b1 + a2 × b2 + a3 × b3)
θ = arccos(0.129410 × 0.0920195 + 0.482963 × 0.521869 + 0.866025 × 0.848048)
θ = 3.259 degrees



Orbit Maneuver Latitude and 
Longitude

• The plane change maneuver takes place at one of 
two nodes where the initial and final orbits 
intersect. The latitude and longitude of these nodes 
are determined by the vector cross product. The 
position of one of the two nodes is given by

• Knowing the position of one node, the second node 
is simply



PROBLEM 6Calculate the latitude and longitude of the intersection nodes

between the initial and final orbits for the spacecraft in problem 6.

SOLUTION, From problem 5, 

a1 = 0.129410 

a2 = 0.482963 

a3 = 0.866025 

b1 = 0.0920195 

b2 = 0.521869 

b3 = 0.848048 

• c1 = a2 × b3 - a3 × b2 = 0.482963 × 0.848048 - 0.866025 × 0.521869 = -0.0423757

• c2 = a3 × b1 - a1 × b3 = 0.866025 × 0.0920195-0.129410 × 0.848048 = -0.0300543

• c3 = a1 × b2 - a2 × b1 = 0.129410 × 0.521869 - 0.482963 × 0.0920195 = 0.0230928

• lat1 = arctan(c3 / (c12 + c22)1/2) 

lat1 = arctan(0.0230928 / (-0.04237572 + -0.03005432)1/2)

lat1 = 23.965 degrees 

long1 = arctan(c2 / c1) + 90

long1 = arctan(-0.0300543 / -0.0423757) + 90 

long1 = 125.346 degrees 

lat2 = -23.965 degrees 

• long2 = 125.346 + 180 = 305.346 degrees



Orbit Rendezvous

• Orbital transfer becomes more complicated when the object 
is to rendezvous with or intercept another object in space: 
both the interceptor and the target must arrive at the 
rendezvous point at the same time. This precision demands a 
phasing orbit to accomplish the maneuver. 

• A phasing orbit is any orbit that results in the interceptor 
achieving the desired geometry relative to the target to 
initiate a Hohmann transfer. If the initial and final orbits are 
circular, coplanar, and of different sizes, then the phasing 
orbit is simply the initial interceptor orbit. 

• The interceptor remains in the initial orbit until the relative 
motion between the interceptor and target results in the 
desired geometry. At that point, we would inject the 
interceptor into a Hohmann transfer orbit.



Launch Windows

• Similar to the rendezvous problem is the launch-
window problem, or determining the appropriate 
time to launch from the surface of the Earth into 
the desired orbital plane. Because the orbital plane 
is fixed in inertial space, the launch window is the 
time when the launch site on the surface of the 
Earth rotates through the orbital plane. 

• The time of the launch depends on the launch site's 
latitude and longitude and the satellite orbit's 
inclination and longitude of ascending node.



Orbit Maintenance

• Once in their mission orbits, many satellites need no 
additional orbit adjustment. On the other hand, mission 
requirements may demand that we maneuver the satellite to 
correct the orbital elements when perturbing forces have 
changed them. Two particular cases of note are satellites with 
repeating ground tracks and geostationary satellites.

• After the mission of a satellite is complete, several options 
exist, depending on the orbit. We may allow low-altitude 
orbits to decay and reenter the atmosphere or use a velocity 
change to speed up the process. We may also boost satellites 
at all altitudes into benign orbits to reduce the probability of 
collision with active payloads, especially at synchronous 
altitudes.



Tsiolkovsky Equation

• From the Newton’s equations of motion and momentum:

Since Thrust is defined as : 

dt

dv
mmaF 

eVmF 
.

Thus by equating these two equations:

eV
dt

dm

dt

dv
m 

Tsiolkovsky’s Rocket Equation is born:

final

initial
exhaust

M

M
VV ln



Delta V Budget

• To an orbit designer, a space mission is a series of 
different orbits. For example, a satellite might be 
released in a low-Earth parking orbit, transferred to 
some mission orbit, go through a series of resphasings
or alternate mission orbits, and then move to some 
final orbit at the end of its useful life. Each of these 
orbit changes requires energy. T

• The Delta V budget is traditionally used to account for 
this energy. It sums all the velocity changes required 
throughout the space mission life. In a broad sense 
the V budget represents the cost for each mission orbit 
scenario.



Hyperbolic Excess Velocity
• If you give a space vehicle exactly escape velocity, it will just barely 

escape the gravitational field, which means that its velocity will be 
approaching zero as its distance from the force center approaches 
infinity. If, on the other hand, we give our vehicle more than 
escape velocity at a point near Earth, we would expect the velocity 
at a great distance from Earth to be approaching some finite 
constant value. This residual velocity the vehicle would have left 
over even at infinity is called hyperbolic excess velocity. 

• We can calculate this velocity from the energy equation written for 
two points on the hyperbolic escape trajectory – a point near 
Earth called the burnout point and a point an infinite distance from 
Earth where the velocity will be the hyperbolic excess velocity, v∞



PROBLEM 7
Calculate the escape velocity of a spacecraft launched from an Earth 
orbit with an altitude of 200 km. 

SOLUTION, 

Given: 

r = (6,378.14 + 200) × 1,000 = 6,578,140 m 

Equation for escaping bodies with hyperbolic orbit was:

Vesc = SQRT[ 2 × GM / r ] 
Vesc = SQRT[ 2 × 3.986005×1014 / 6,578,140 ]
Vesc = 11,009 m/s



Hyperbolic Excess Velocity Equation

• Solving for v∞ we obtain:

• Note that if v∞ = 0 (as it is on a parabolic 
trajectory), the burnout velocity, vbo, becomes 
simply the escape velocity.



PROBLEM 8

A spacecraft launched from Earth has a burnout 

velocity of 11,500 m/s at an altitude of 200 km. What is the 

hyperbolic excess velocity? 

SOLUTION, Given: 

Vbo = 11,500 m/s 

From Problem 7, 

Vesc = 11,009 m/s 

Hyberbolic Excess Velocity Equation

(Vinfinity)
2 = Vbo

2 - Vesc
2

Vinfinity = SQRT[ 11,5002 - 11,0092 ] 

Vinfinity = 3,325 m/s



Sphere of Influence
• It is a fact, however, that once a space vehicle is a great 

distance from Earth, for all practical purposes it has escaped. 
In other words, it has already slowed down to very nearly its 
hyperbolic excess velocity. It is convenient to define a sphere 
around every gravitational body and say that when a probe 
crosses the edge of this sphere of influence it has escaped. 

• For most purposes, the radius of the sphere of influence for a 
planet can be calculated as follows:

• where Dsp is the distance between the Sun and the 
planet, Mp is the mass of the planet, and Ms is the mass of the 
Sun. Equation is also valid for calculating a moon's sphere of 
influence, where the moon is substituted for the planet and 
the planet for the Sun.



PROBLEM 9

Calculate the radius of Earth's sphere of influence. 

SOLUTION, From Basics Constants, 

Dsp = 149,597,870 km 

MP = 5.9737×1024 kg 

MS = 1.9891×1030 kg 

Equation (4.89), 

REarth = Dsp × (MP / MS)0.4

REarth = 149,597,870 × (5.9737×1024 / 1.9891×1030)0.4

REarth = 925,000 km


